Job Type: Contract
Job Category: IT

Job Description

Job Title: AWS Platform Architect / Engineer
Contract

 

Job Summary:

We are seeking an experienced AWS Platform Architect / Engineer to design, implement, and manage scalable AI/ML cloud architectures. The ideal candidate will have expertise in AWS services, Gen AI integration, cross-cloud platform implementation, Infrastructure as Code (IaC), MLOps, security, and DevOps.

 

Key Responsibilities:

AWS Platform Architecture

  • Design and implement scalable, secure, and cost-effective AI/ML architectures using AWS.
  • Utilize AWS services such as EKS, AWS Lambda, and AWS Step Functions for serverless and container-based AI/ML applications.
  • Implement data pipelines and big data processing using Amazon S3, AWS Glue, and Amazon EMR.

 

Gen AI & AI/ML Integration

  • Lead the design and implementation of AI/ML pipelines integrating with AWS SageMaker and Amazon Bedrock.
  • Develop and optimize ML models using Amazon Rekognition, Comprehend, Forecast, and Personalize.
  • Implement MLOps practices for model versioning, automated testing, and continuous deployment.
  • Utilize Amazon Bedrock to create foundation models and build generative AI applications.

 

Cross-Cloud Platform Implementation

  • Design and implement hybrid AI solutions across AWS, Azure, and Google Cloud.
  • Develop integration strategies for seamless data flow and model deployment across multiple cloud environments.
  • Implement multi-cloud governance and security best practices.

 

Infrastructure as Code (IaC)

  • Develop and maintain Terraform code for AWS infrastructure provisioning and third-party AI services integration.
  • Implement modular and reusable Terraform configurations for AI/ML environments.
  • Utilize Terraform to manage complex AI/ML infrastructure, including GPU-enabled instances and distributed training clusters.

 

AWS Administration & Security

  • Manage AWS resources for AI workloads, including EC2 GPU instances, SageMaker notebooks, and EKS clusters.
  • Implement robust security for AI/ML workloads using data encryption, IAM policies, and secure deployment practices.
  • Set up monitoring and alerting using AWS CloudWatch, Datadog, and Splunk.

 

CI/CD & DevOps

  • Configure and customize CI/CD pipelines for AI/ML model deployment and Terraform infrastructure automation.
  • Integrate GitLab with CI/CD tools for AI model and infrastructure deployment.
  • Implement GitOps practices for managing AI infrastructure deployments.

 

Collaboration & Documentation

  • Utilize GitLab for version control, code reviews, and AI/ML model development.
  • Document AI/ML pipelines, architectures, and infrastructure in Confluence for team collaboration.

 

Qualifications:

  • 5+ years of hands-on experience designing and implementing AI/ML platforms on AWS.
  • Expertise in AWS AI services such as Amazon Bedrock, SageMaker, Rekognition, Comprehend, and Personalize.
  • Strong experience in cross-cloud platform implementation (AWS, Azure, Google Cloud).
  • Proficiency in Terraform, GitLab, and CI/CD for AI/ML workloads.
  • Strong Python programming skills for ML model development.
  • Knowledge of containerization (Docker, Kubernetes, EKS).
  • Excellent problem-solving and communication skills.
  • Bachelor’s or Master’s degree in Computer Science, Data Science, or a related field (or equivalent experience).

 

Why Join Us?

  • Work on cutting-edge AI/ML projects in a dynamic multi-cloud environment.
  • Opportunities for growth in AI/ML, cloud architecture, and MLOps.
  • Competitive salary and benefits package.

#AWSPlatformArchitect #AWSPlatformEngineer #AWSJobs #CloudComputingJobs #USJobs #ITJobs #TechnicalJobs #AWSExpert #AWSArchitecture #CloudSolutions #InfrastructureAutomation #AWSCertified #CloudSecurity #ScalableSystems #BachelorDegreeRequired

Required Skills
DevOps Engineer

Fill below details & click “Apply”

Only add 10 digit number without prefix
Resume can be attached in PDF, JPG, Word , Txt format only

Share This Job